Evaluating thiamine deficiency in patients with diabetes

The pivotal role of hyperglycaemia as part of the disease mechanism of the late specific complications of diabetes mellitus has been documented in several clinical studies. Recently, a new molecular mechanism has been implicated in the pathobiology of the microvascular and macrovascular complications of diabetes.\(^1\) In experimental settings, increased polyol pathway flux, increased hexosamine pathway flux, increased advanced glycation endproduct (AGE) formation and activation of protein kinase-C (PKC) isoforms have been observed. All these mechanisms reflect a hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron transport chain, resulting in a partial inhibition of the glycolytic enzyme glyceraldehyde phosphate dehydrogenase. Supplementation with benfotiamine – a lipid-soluble thiamine derivative – can increase transketolase activity, providing a diverse metabolic pathway for increased fructose-6-phosphates and glyceraldehyde-3-phosphate concentrations to pentose-5-phosphates and erythrose-4-phosphate.

Although hyperglycaemia has been shown to result in a decrease of transketolase activity in experimental diabetes, it is not known whether systemic thiamine deficiency leads to the same phenomenon. There are limited data regarding thiamine status in clinical settings, especially in patients with diabetes. Higher erythrocyte transketolase activity (εETK), indicating subnormal thiamine status, has been documented in chronic alcoholic patients,\(^3\) among hospitalised elderly patients\(^4\) and in subjects with congestive heart failure receiving long-term furosemide therapy.\(^5\) As for εETK in diabetes, a marginal thiamine deficiency in diabetic outpatients was documented in a study from Japan.\(^6\)

We investigated εETK in a non-selected diabetic population of Caucasian origin.

Seventy-five consecutive patients with diabetes (37 women and 38 men; 13 with type 1 diabetes and 62 with type 2 diabetes; aged 55.4±1.3 years; duration of diabetes 9.7±0.9 years; serum creatinine 85±1 µmol/L; HbA1C 9.6±0.2%) from our outpatient department were investigated. (Measurements are given as mean±SEM.) Exclusion criteria were elevated serum creatinine level (>150 µmol/L), clinical signs of congestive heart failure, chronic alcoholism, ketoadidosis and a vegetarian diet. Fasting blood samples were taken for measuring εETK using a standard laboratory method.\(^7\) This method tests transketolase activity in red blood cells before and after saturation with exogenous thiamine. Thus, the higher the εETK, the higher the risk for thiamine deficiency. The normal value of εETK was established by measuring blood samples of 60 healthy subjects without diabetes (28 women and 32 men; aged 54.1±2.5 years), resulting in a reference range (mean±2 x standard deviation) of 1.00–1.26. According to one widely accepted evaluation,\(^7\) risk for thiamine deficiency may be indicated by the level of εETK: a level < 1.16 denoting low risk, 1.16–1.25 moderate risk, and a level ≥ 1.26 denoting high risk.

The εETK of patients with diabetes was significantly higher than that of control subjects (1.14±0.01 vs. 1.08±0.02; p<0.01). Abnormal (≥ 1.26) εETK was found in only six subjects (8.0%). The εETK was < 1.16 in 45 patients, and εETK levels between 1.16 and 1.25 were found in 24 patients. In order to evaluate the effect of benfotiamine, five patients with diabetes were treated with benfotiamine 320 mg daily for seven days. A significant decrease of εETK was found in these patients (1.10±0.03 vs. 1.02±0.02).

Suboptimal εETK, that is, a marginal thiamine deficiency, was observed in some patients with diabetes but εETK levels could be improved by using benfotiamine. Benfotiamine treatment has been shown to prevent experimental diabetic retinopathy,\(^1\) nephropathy\(^7\) and neuropathy.\(^8\) Although the results of a small pilot study with benfotiamine were encouraging in patients with diabetic polyneuropathy,\(^9\) its potential clinical usefulness for preventing late diabetic complications should be tested in large randomised, controlled clinical trials.

Acknowledgement
The excellent laboratory work of Éva Barna (National Institute for Food Safety and Nutrition) is acknowledged.

Conflict of interest
None declared.

References
Intervention trials using statins to lower LDL cholesterol (LDL-C) have consistently shown impressive reductions in major cardiovascular events. However, despite the effective lowering of LDL-C in these trials, there is an unacceptably high residual risk of having a major cardiovascular event. One reason for this relates to the presence of a low level of HDL cholesterol (HDL-C). The combined results of population studies and clinical trials support the now accepted view that raising the level of HDL-C should be considered as a therapeutic target of importance comparable to that of lowering LDL-C. The time of HDL-C as a therapeutic target has arrived.

This handbook for clinicians is written by two internationally recognised authorities in this critically important field; Philip Barter and Kerry-Anne Rye of The Heart Research Institute, Sydney, Australia. It provides a clear understanding of HDLs and offers valuable guidance on when and how to enhance the protection provided by these lipoproteins.

So, what are HDLs? Where are they formed? How are they regulated? What is their function? How do they protect against atherosclerosis? Why is the plasma level of HDL-C low in some people and how can it be raised? These, and many other questions, are addressed in this book.

Clinical guide for the healthcare professional

High Density Cholesterol: The New Target

Authors: Philip Barter, Kerry-Anne Rye

Retail price £14.99/€23.00
Special offer price £10.99/€17.00

Intervention trials using statins to lower LDL cholesterol (LDL-C) have consistently shown impressive reductions in major cardiovascular events. However, despite the effective lowering of LDL-C in these trials, there is an unacceptably high residual risk of having a major cardiovascular event. One reason for this relates to the presence of a low level of HDL cholesterol (HDL-C). The combined results of population studies and clinical trials support the now accepted view that raising the level of HDL-C should be considered as a therapeutic target of importance comparable to that of lowering LDL-C. The time of HDL-C as a therapeutic target has arrived.

This handbook for clinicians is written by two internationally recognised authorities in this critically important field; Philip Barter and Kerry-Anne Rye of The Heart Research Institute, Sydney, Australia. It provides a clear understanding of HDLs and offers valuable guidance on when and how to enhance the protection provided by these lipoproteins.

So, what are HDLs? Where are they formed? How are they regulated? What is their function? How do they protect against atherosclerosis? Why is the plasma level of HDL-C low in some people and how can it be raised? These, and many other questions, are addressed in this book.

Name: .. Address: ..
Postcode: .. Tel: ... Email: ..

Copies @ £10.99 / €17.00 each plus postage & packaging @ £1.50 / €2.20 per book.
Cheques payable to: Sherborne Gibbs Limited. Credit cards accepted, please provide details below.

Card No.: ..
Expiry date: .. Signature: ..

Please complete the above form and return with payment to:
Ms Jane Standring, Sherborne Gibbs Limited, Edgbaston House, 3 Duchess Place, Edgbaston, Birmingham B16 8NH, UK
Tel: +44 (0)121 454 4114 Fax: +44 (0)121 454 1190 email: jstanding@sherbornegibbs.co.uk

Published by SHERBORNE / GIBBS / LIMITED

Diabetes Vasc Dis Res 2006;3:120–1