The adrenocorticotropic hormone (ACTH) is synthesized by the corticotroph cells of the anterior pituitary gland. ACTH, a post-translational product of the proopiomelanocortin protein (POMC), is a 39-amino acid peptide, its sequence being highly conserved in mammals. ACTH binds to the highly specific, for ACTH, melanocortin (MC) 2 receptors located on the surface of adrenal zona glomerulosa cells producing cortisol. MC2 belongs to a superfamily of type 1 G protein-coupled receptors. The family of melanocortin receptors includes five members each having characteristic size, tissue distribution and biological significance. Thus, the MC1 receptor is the principal melanocortin receptor in the skin where it regulates its pigmentation. The MC3 and the MC4 receptors in the central nervous system regulate food intake and energy homeostasis, and knockout animals for these receptors are obese. The MC5 receptor exhibits a wide distribution although its levels in the CNS are low. In the adrenal cortex, it induces aldosterone production from the zona glomerulosa cells. To activate ACTH the MC2 receptor needs the presence of a small trans-membrane protein, the MC2 accessory protein (MRAP). Mutations of this protein result in the type 2 (FGD) syndrome. Type 1 familial glucocorticoid deficiency is the result of mutations of the MC2 receptor itself. ACTH stimulates cortisol synthesis and secretion by regulating multiple steps in the steroidogenic pathway including an increase of the number of low-density lipoprotein (LDL) receptors and the cleavage of the side-chain of cholesterol converting it to pregnenolone, the first and rate-limiting step in cortisol production. For complete coverage of all related areas of Endocrinology, please visit our on-line FREE web-text, WWW.ENDOTEXT.ORG.

INTRODUCTION

The corticotroph cells of the anterior pituitary synthesize and secrete the adrenocorticotropic hormone (ACTH) which via the circulation binds and activates its receptors in the adrenal fasciculate cells affecting most steps in the synthesis of cortisol. This widely accepted model has been extensively advanced and enriched during the last few years. More specifically, it has been found that for the ACTH receptor, the melanocortin receptor 2 (MC2), needs the presence of a small trans-membrane protein, the MC2 accessory protein (MRAP) to respond to ACTH. Mutations of this protein result in the type 2 familial glucocorticoid deficiency (FGD) syndrome Type 1 is the result of mutations of the MC2 receptor itself. Newer data reveal the role of the autocrine-paracrine micro-regulation of ACTH-mediated cortisol synthesis by a large number of intra-adrenally produced factors deriving from chromaffin cells, resident immune cells, intra- and peri-adrenal adipocytes and the adrenal innervation. Great progress has been also made in our understanding of the pathophysiology of the triple A syndrome which is caused by mutations in the gene encoding the regulatory protein ALADIN, a product of the ADRACALIN gene. ALADIN is a WD-repeat regulatory protein, part of the nuclear pore complex. It is crucial for the development of the peripheral and the central nervous system. The updated version of this chapter includes the classical data regarding the ACTH-induced cortisol production by the adrenal gland, as well as a description of the new findings.

ACTH AND ITS PRECURSOR MOLECULE PRO-OPIOMELANOCORTIN (POMC)

The adrenocorticotropic (ACTH) hormone is the primary regulator of cortisol production synthesized in the human adrenal fasciculate cells. ACTH is a post-translational product of the proopiomelanocortin protein (POMC) which is synthesized in the corticotroph cells of the anterior pituitary gland. ACTH is a 39-amino acid peptide. Its sequence is highly conserved in mammals since only amino acids 31 and 33 vary between higher mammals and primates. The biological activity of the ACTH molecule depends on its first 24 amino-terminal amino acids while fragments of less than 20 amino acids long are completely inactive. However, the residue 25-39 is important for the stability of the molecule, increasing its otherwise short half-life. Truncation of ACTH from the C-terminus gradually reduces its activity while removal of the four basic residues (Lys–Lys–Arg–Arg) in positions 15–18 inactivates it completely. Finally, it should be noted that its first 13 residues activate all melanocortin receptors in addition to the ACTH receptor. ACTH acts through the formation of cAMP which facilitates the transfer of cholesterol into the mitochondrial inner membrane for the synthesis of adrenal steroids (1,2).

The synthesis of POMC, its post-translational modification and the secretion of ACTH are under the control of corticotropin-releasing hormone (CRH or CRF) and to a lesser degree to arginine vasopressin (AVP). Both these hormones are synthesized in the parvocellular cells of the paraventricular (PVN) hypothalamic nucleus and are under the negative control of the circulating glucocorticoids. It should be noted that the AVP derived from PVN follows a distinct regulatory and secretory path, completely different from that of AVP.
synthesized in the magnocellular and transferred and secreted from the posterior pituitary as a regulator of water balance. Indeed, the magnocellular-derived AVP is transferred to posterior pituitary by axonal transport and its synthesis and secretion are under the influence of osmotic and oncotic stimuli and plays no part in stress response. On the other hand, the parvocellular-derived CRH and AVP travel, via axonal transport, to median eminence (ME) at the lower part of hypothalamus from where they are both secreted into the vascular connection between hypothalamus and anterior pituitary, the portal circulation. Multiple neural signals regulate the synthesis of CRF and AVP as well as their secretion from ME. CRH reaching the anterior pituitary corticotrophs and binds to the CRH-R1 receptors. The corticotrophs represent approximately 10% of anterior pituitary cells. Their main product, POMC, is a 260 AA protein, which is post-translationally cleaved into several bioactive peptides that are secreted from the corticotrophs along with ACTH, including β-lipotropin, the endogenous opioid peptide beta-endorphin, and melanocyte stimulating hormones (MSH). (3,4)

Glucocorticoids exert their negative feedback control on both the hypothalamus at the PVN and anterior pituitary corticotrophs suppressing the POMC synthesis and ACTH secretion. Furthermore, chronic exposure to high levels of endogenous or exogenous glucocorticoids results in characteristic corticotropic cell degeneration. The immune system participates in the regulation of ACTH production via interleukins (IL)-1, IL-6, tumor necrosis factor (TNF)-alpha and the interferons alpha and gamma which affect the axis at all its levels i.e. hypothalamus, pituitary, and adrenal cortex. (5). Finally, the intra-adrenal production of cytokines appears to play an important modulator of the ACTH-mediated effect on adrenocortical cells (6).

EFFECTS OF ACTH ON ADRENAL CORTICAL CELLS

ACTH enters the systemic circulation and binds to the highly specific, for ACTH, MC2 receptors located on the surface of adrenal cortical cells. The adrenal cortex is composed of three zones. The outermost or zona glomerulosa produces aldosterone, the middle or zona fasciculata is the largest producing cortisol, while the innermost or zona reticularis produces the weak adrenal androgens. Most MC2 receptors are localized in the zona fasciculata. In general, the steroids produced by the adrenal cortex are classified as 21-carbon steroids (glucocorticoids and mineralocorticoids), as 19-carbon steroids (adrenal androgens), and 18-carbon (adrenal estrogens). Cortisol, the main endogenous glucocorticoid, is synthesized in zona fasciculata under the exclusive regulation of ACTH. ACTH is of secondary importance in aldosterone production (where plasma angiotensin II and serum potassium represent the main regulators). The production of adrenal androgens is more complicated, ACTH playing a minor role. The mechanism of ACTH action follows the classical peptide hormone rules. Indeed, ACTH binds to its receptor located on adrenal cell membranes activating a Gs-protein resulting in an increase of intracellular cyclic adenosine monophosphate (cAMP).

ACTH stimulates cortisol synthesis and secretion by regulating multiple steps in the steroidogenetic pathway. More specifically, ACTH increases the number of low-density lipoprotein (LDL) receptors resulting in an increase in uptake of cholesterol, the precursor for the biosynthesis of all steroid hormones. 80% of the cholesterol needed for the synthesis of adrenal steroids is supplied by LDL. ACTH also regulates the formation of microvillar channels in the plasma membranes which retain HDL particles and contain high numbers of HDL receptors. ACTH affects the cleavage of the side-chain of cholesterol converting it to pregnenolone, the first and rate-limiting step in cortisol production. The CYP11A1 gene which encodes the cholesterol side-chain cleavage is regulated by ACTH and by the steroidogenic factor 1 (SF-1). Moreover, ACTH hydroxylates the pregnenolone in the 17-OH position which is subsequently converted into 11-deoxycortisol. 11-deoxycortisol moves back to mitochondria where a hydroxylation at position 21 results in cortisol which is then rapidly secreted into the systemic circulation. (7).

Activation of the MC2 receptors by ACTH in the adrenals also induces the adrenal production of factors affecting adrenal growth and its blood flow. Thus, among other things, ACTH stimulates the intra-adrenal production of vascular endothelial growth factor (VEGF) and the vaso-relaxant epoxy-eicosa-trienoic acids (EETs). (8,9)

Finally, chronic exposure of adrenocortical cells to high levels of ACTH (from eutopic or ectopic production) results in the development of adrenal nodules and finally neoplasias. Activation of ACTH receptor and PKA are considered vital for maintaining the highly differentiated cellular phenotype of adrenal cells and the subsequent activation of ERK is of low importance for cell proliferation. In addition, ACTH signals inactivate Akt, a kinase that promotes survival and proliferation. On the other hand, ACTH receptors are up-regulated in adrenocortical adenomas of patients with ACTH-dependent hyper-cortisolemia, intensifying the adrenal response to the already elevated ACTH, aggravating their disease. ACTH also up-regulates the human homolog of Diminuto/Dwarfl gene, which is associated with benign adrenocortical adenomas. Low expression of this gene correlates with apoptosis, indicating that its intensified expression may contribute to cell survival. The role of ACTH in adrenocortical tumors remains to be elucidated. It may depend on the state of differentiation of the particular cell or the presence of additional events that may decide the direction of the ACTH signal towards cell survival or inhibition of proliferation. (10,11).

MELANOCORTIN 2 (MC2), THE ACTH RECEPTOR

ACTH exerts its effects on the adrenals via a highly selective receptor, a member of the melanocortin (MC) receptor superfamily of type 1 G protein-coupled receptors. As mentioned above, the MC2 receptor is highly specific for one only ligand, ACTH (12). The family of
melanocortin receptors includes five members, each having characteristic size, tissue distribution and biological significance. (13). The MC system and its receptors regulate multiple physiological processes including skin pigmentation, glucocorticoid production, food intake and energy balance. The MC2 receptor is a 297 amino acid transmembrane G-protein coupled receptor. In humans, it maps to 18p11.2. Activation of the MC2 receptor initiates a cascade of events affecting multiple steps in adrenal cortisol production. Mutations in the MC2 may result in familial glucocorticoid deficiency, a group of autosomal recessive disorders characterized by resistance to ACTH. It should be noted that although the MC2 receptor is expressed predominantly in the adrenal cortex, it is also present in skin melanocytes where its ligand ACTH also binds to the MC1 receptor thus affecting skin pigmentation. Indeed, chronically elevated ACTH in the circulation (chronic adrenal insufficiency or ectopic ACTH production or in Nelson’s syndrome following adrenalectomy) can induce skin and gum hyper-pigmentation. MC2 is also expressed in adipocytes and mediates stress-induced lipolysis via central ACTH release. The MC2 receptor is localized in all three zones of the adrenal cortex. Results from binding studies indicate that in the adrenal cortex MC2 can be subdivided into a type with a KD of 1 nM, but with only 60 binding sites per cell and into a second type with a KD of 300 nM, but with several orders of magnitude more binding sites (about 600,000) per cell. The presence of high and low affinity receptors for ACTH means that the adrenal cortex is highly sensitive and specific to the usual concentrations of ACTH in the systemic circulation (14).

Intra-adrenal regulation of cortisol production

The fasciculate cells of the adrenal cortex are affected by multiple factors produced within the adrenal gland. It should be noted that in addition to steroidogenic cells, the adrenals contain the chromaffin cells in the adrenal medulla arranged in columns crisscrossing the length of the gland, nerve fibers from intra- and extra-adrenal neurons, multiple cells of the immune system including monocytes / macrophages, mast cells, lymphocytes, vascular endothelial cells and adipocytes within and around the gland. All these cells form complex intra-adrenal networks of interaction affecting, among other things, the response of fasciculata cells to ACTH, the expression of the MC2 receptors and their associated proteins, the growth and vascularization of the gland and many other functions.

Role of adrenal chromaffin cells

Chromaffin cells in the adrenal medulla originate from neural crest, their main products being the catecholamines epinephrine and norepinephrine. Chromaffin cells also produce neuropeptides and cytokines released together with catecholamines. Chromaffin cells are not clearly separated from the adrenal cortex as previously thought. Indeed, chromaffin cells can affect adrenal cortical cells in a paracrine mode of action since they can be found in all zones of the adult adrenal cortex up to the outer layer of the cortex i.e. zona glomerulosa and may form larger conglomerates of chromaffin in the adrenal subcapsular region. On the other hand, cortical cells are also located in the medulla, where they may form islets surrounded by chromaffin cells. This close association between cortical and chromaffin cells allows a paracrine regulation of adrenocortical steroidogenesis. Indeed, adrenal chromaffin cells synthesize a multitude of neuropeptides including beta-endorphin, the enkephalins, the dynorphins, corticotropin-releasing hormone (CRH), substance P, adrenomedullin, neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), atrial natriuretic peptide (ANP), somatostatin etc. These neuropeptides can effect either the response of cortical cells in zona fasciculate to ACTH, the vascularization of cortex, its growth, or they may exert direct modulatory effects on the cortical cells themselves. These effects on the adrenal cortex coordinate the two stress axes and streamline steroidogenesis as per the needs of the adaptation response to stressful stimuli. (15-19). (Figure 1)
Figure 1. Autocrine and paracrine effects of intra-adrenally-produced substances on the ACTH-induced cortisol synthesis
Role of peri- and intra-adrenal adipocytes on the adrenal effects of ACTH

It is now suspected that the peri- and intra-adrenal adipocytes modulate the effects of ACTH on adreno-cortical cells. Thus, it has been shown that leptin exerts an inhibitory effect on ACTH-induced corticosteroid production by human adrenocortical cells without affecting their viability and proliferation. It should be noted that murine adipocyte cell lines and immortalized adipocytes express the MC2 receptor suggesting that these adipocytes are also affected by ACTH. (20-21).

The MC2 signalling pathway

As stated above, the MC2 receptor is a G-protein coupled receptor. Among the G proteins Gs and Gi2 are implicated in ACTH signaling. ACTH also increases the transcription of G-alpha/q or G-q/11, a hetero-trimeric protein, which couples the MC2 receptor. G-q/11 activates the phospholipase C pathway. Mutations of the alpha subunits of Gs and Gi2 are associated with adrenocortical tumor formation. Signals that initiate from the MC2 receptor and the G-proteins lead to cAMP formation and activation of PKA and PKC. As a result several intermediate molecules are involved including kinases and transcription factors that orchestrate the ACTH actions on adrenal cells. The MC2 receptor is a weak activator of MAP Kinases ERK1 and ERK2. ERK1 and ERK2 activation is important in ACTH-triggered mitogenic effects. In normal adrenal cortical cells, MC2 signals lead to activation of the Stress Activated Protein Kinase (SAPK) JNK. Activation of JNK depends on PKC activity and mobilization of intracellular Ca++ implying that both PKC activation and Ca++ influx result from the binding of ACTH to its receptor. In tissue culture experiments using the Y1 adrenocortical tumor cell line, ACTH exerts antiproliferative effect, mediated by cAMP. ACTH signals result in dephosphorylation and inactivation of Akt/PKB kinase thus inhibiting the proliferation of adrenocortical tumor cells. Such anti-proliferative effect is most likely associated with increased steroidogenesis and suppression of the malignant phenotype of this particular cell line. The MC2 receptor effects are mediated via activation of the cAMP pathway, which includes the cAMP-dependent transcription factors CRE (cAMP responsive element modulator) and CREB (cAMP responsive element binding protein) that result in transcriptional activation of steroidogenic enzymes, cell proliferation and differentiation. Activation of the MC2 receptor leads to stimulation of Fos and Jun transcription, which by heterodimerizing form the AP1 complex. It should be noted here that the Fos gene family consists of four members, c-Fos, FosB, Fra1 and Fra2, while the Jun family consists of three members, c-Jun, JunB and JunD. These proteins form hetero- or homo- dimers inducing transcription through binding to AP1-binding sites. Activation of AP1-dependent transcriptions leads to the production of several pro-mitotic proteins while its inhibition results in a blockade of cell cycle to the G1 to S phase transition.

THE MELANOCORTINERGIC SYSTEM

Conceptually, the fact that the ACTH receptor belongs to the melanocortin receptor family implies a close association between several physiological processes including stress, homeostasis, regulation of food intake and regulation of energy balance, immunity and skin function. Indeed, ACTH can bind receptors in melanocytes, adipocytes, mononuclear / macrophages and several areas within the central nervous system, with a much lower affinity compared to that of the MC2 receptor. However, direct actions of ACTH through the MC2 receptor have also been reported in several peripheral tissues. For instance, ACTH inhibits leptin secretion from adipocytes via the MC2 receptor present in adipocytes, an affect indirectly contributing to the regulation of energy homeostasis during stressful periods. (22). The melanocortinergic system in the central nervous system consists of the endogenous agonists alpha-, beta-, and gamma-MSH (post-translational products of POMC), the naturally occurring antagonists the agouti-related protein (AGRP) produced by the arcuate nucleus neurons in hypothalamus, and the agouti protein found in the skin. The AGRP antagonizes alpha-MSH in the hypothalamus at the level of MC3 and MC4 receptors. The agouti protein and AGRP require the presence of a third protein, Mahogany, to antagonize MSH. Mahogany protein is widely expressed and it is a close relative of Attractin, an immunoregulatory protein made by human T lymphocytes.

Activation of the central melanocortin receptors (MC3 and MC4) by alpha MSH inhibits feeding and alters the rate of energy consumption leading to weight loss, whereas its blockade results in obesity. Development of MC3 and MC4 knockout mice revealed differential actions of each receptor. MC4 -/- mice were hyperphagic with partially increased metabolic efficiency while MC3 -/- animals developed obesity due to increased metabolic efficiency, thus underlying their significance in metabolism and obesity. The MC receptor is also involved in the regulation of autonomic nervous system tone and of arterial pressure at the level of the central nervous system. The MC receptor appears to be also involved in several higher learning processes. Outside the central nervous system the MC4 receptor is expressed in osteoblasts where it may be involved in bone remodeling facilitating the communication between osteoblasts and osteoclasts. (23-25).

The MC1 receptor is a 315 amino acid transmembrane protein which in humans is mapped to 16q24. It is the principal melanocortin receptor in the skin where it regulates its pigmentation. It exhibits high affinity for most MSH isoforms and a much lower affinity for ACTH. Its highest affinity is towards alpha–MSH (Ki = 0.033 nmol/l). Stimulation of MC1 in the skin and the hair follicles by alpha-MSH results in induction of melanogenesis producing dark skin and hair in several species including the humans. The MC1 is also present in the adrenals, the leukocytes, lungs, lymph nodes, ovaries, testes, pituitary, placenta, spleen and the uterus. The agouti protein is an endogenous antagonist of alpha-MSH at the level of the MC1 receptor in the skin. Over-expression of the agouti protein results in...
fair skin, reddish hair and disturbances of energy balance. Variants of the MC1 receptor in humans are associated with red hair, pale skin, and increased risk for skin cancer. The MC1 in leukocytes and macrophages has been associated with the immune effects of alpha-MSH. (26).

The MC3 receptor is expressed mainly in the brain. In humans it is a 360 amino acid its protein mapping to 20q13.2. The MC3 and the MC4 receptors in the Central Nervous System regulate food intake and energy homeostasis. Knockout (KO) animals for these receptors are obese. The MC4 receptor KO mice are hyperphagic while the MC3 receptor KO animals are not hyperphagic but still obese signifying the effect of this receptor on the overall energy homeostasis. The agouti and the agouti-related protein are endogenous natural antagonists of the MC1, MC3 and MC4 receptors. Finally, the MC3 receptor may be involved in the mechanism turning off the inflammatory response mainly via suppression of macrophage migration. In the brain the MC3 receptor is mainly expressed in the arcuate nucleus at the basis of hypothalamus where it regulates hunger and satiety.

The MC4 receptor is a 332 amino acid trans-membrane protein. It is expressed in the central nervous system (specifically in the hypothalamus), the gastrointestinal tract and the placenta. In humans, it maps to 18q22. The MC4 receptor is a major regulator of food intake. Inactivating mutations of MC4 cause obesity both in mice and humans. Global homozygous deletion of MC4 in mice results in hyperphagia, increased fat and lean mass, increased body length, reduced activity and a suppressed metabolic rate. Inactivating mutations in MC4 are the single most common form of monogenic obesity in humans. Common variants near the MC4R locus are associated with adiposity, body weight, risk of obesity and insulin resistance. In addition to the homeostasis of energy and thermogenesis the MC4 receptor plays other roles including regulation of autonomic control of blood pressure. Finally, the MC4 receptor plays an important role in the production of the neuropeptides YY and glucagon-like peptide 1 by the enteroendocrine cells. (27-31).

The MC5 receptor is a 325 amino acid trans-membrane protein. It is expressed in the adrenals, skin, stomach, lung and spleen. Its levels in the central nervous system are very low. In the adrenal cortex, it is expressed in all three layers but predominantly in the aldosterone-producing zona glomerulosa cells. The presence of MC5 expression in zona glomerulosa may be involved in melanocortin-induced aldosterone production. In the skin, the MC5 receptor affects exocrine function. It is expressed in peripheral lymphocytes and in splenocytes indicating that this may be the receptor utilized by ACTH in those cells. MC5 is expressed in articular chondrocytes mediating cytokine production in the inflamed joints in rheumatoid arthritis. The MC5 receptor also mediates the production of IL-6 from adipocytes contributing to metabolic inflammation and insulin resistance. Indeed, stimulation of the MC5 receptor in 3T3-L1 adipocytes with aMSH induces lipolysis and suppresses re-esterification of fatty acids through the ERK1/2 pathway.

Regulation of the MC2 receptor gene expression

The MC2 receptor gene has one untranslated exon (exon one), an 18kb intron, and the coding exon (exon two). The existence of different MC2 transcripts in human adrenal cortical cells suggests the presence of multiple transcription initiation sites. An alternate exon 1 (exon1f) is transcribed in adipose tissue but not in the adrenals. This exon appears to be transcribed by a different promoter region from that reported in the adrenal, thus conferring tissue specificity. Studies on the MC2 promoter polymorphism reveal a single nucleotide polymorphisms close to the transcriptional initiation site (-2C/T) resulting in inhibition of transcription causing reduced MC2 levels even in the heterozygous state. This allele is present in 10% of the population.

The MC2 receptor promoter contains binding sites for several transcription factors. Transcription factors are nuclear proteins modifying the expression of genes by binding to specific DNA sequences usually located upstream of gene promoters. Phosphorylation of a transcription factor results in its activation and modulation of the transcriptional activity of a promoter containing response elements for the specific factor. (32).

Factors affecting the expression of MC2 receptor gene

Effects of ACTH on the expression of the MC2 receptor: Several studies have shown that the MC2 receptor gene is up regulated by its own ligand, ACTH. Indeed, ligand-induced up-regulation of MC2 receptor expression may be a crucial adaptive process directed towards optimizing adrenal responsiveness to ACTH. The effect of ACTH on MC2 receptor expression is dependent on cAMP and probably mediated through AP-1. (33).

Effects of glucocorticoid regulatory elements (GRE) in the MC2 receptor gene: glucocorticoids are major regulators of MC2 expression. Glucocorticoids exert an enhancing effect on basal, ACTH- and cAMP-induced MC2 expression.

Effects of the steroidogenic Factor-1 (SF-1) on MC2 expression: SF-1 is an orphan nuclear receptor. The MC2 receptor gene contains three SF-1 binding sites in the proximity of the transcription initiation site. In addition to its effect on the transcription of the MC2 receptor gene, SF-1 also affects the transcription of genes involved in steroidogenesis in the adrenals and the gonads as well as the organogenesis of both glands. SF-1 knockout mice lack adrenal glands and gonads. SF-1 is also essential for the compensatory adrenal growth following unilateral adrenalectomy. In steroidogenesis, SF-1 affects the transcription of CYP11A1 gene which encodes the
P450scc cholesterol side-chain cleavage enzyme, the first step in steroidogenesis. Several SF-1-binding sites on the promoter of CYP11A1 modulate its transcription rate. (34).

Effects of the nuclear receptor DAX-1 (Dosage-sensitive sex reversal, Adrenal hypoplasia congenital critical region on the X chromosome, gene 1): DAX-1 is a transcription factor expressed in the adrenal gland and gonads. DAX-1 encodes an orphan member of the nuclear hormone receptor super family. DAX-1 inhibits SF-1-mediated steroidogenesis while its absence augments the adrenal responsiveness to ACTH most probably through an up-regulation of the MC2 receptor transcription via SF-1. A cAMP-dependent PKA augments the SF-1-mediated induction of steroidogenesis. Generally speaking, DAX-1 is a suppressor of the transcription of several genes involved in the steroidogenic pathway. Indeed, inactivating mutations of DAX-1 results in the X-linked form of adrenal hypoplasia congenital (AHC) with associated hypogonadotropic hypogonadism. AHC presents as adrenal failure in early infancy, although a wide range of phenotypic expressions have been reported. Interestingly, the MC2 promoter contains several DAX-1 sites. As expected, DAX-1 suppresses the expression of the MC2 gene when transfected in adrenocortical Y-1 cells. In adrenocortical tumors there is a distinct negative correlation between DAX-1 and MC2. (35-36). Effects of the **steroidogenic acute regulatory protein** (StAR). StAR does not appear to affect the MC2 promoter but regulates steroidogenesis, an effect augmented by the ACTH via the MC2 receptor. StAR promotes intra-mitochondrial cholesterol transfer in the adrenal cortical cells. StAR is thus the only major adrenal transcription factor which has not been associated with the expression of the MC2 receptor gene. (37).

The activator protein-1 regulatory element (AP-1) is the product of the hetero-dimerization of the proto-oncogenes Fos and Jun following activation of several signaling pathways including that of PKA and PKC. Two AP-1 binding sites have been identified upstream of the MC2 receptor. Deletion of the AP-1 binding sites on MC2 gene abolishes the stimulatory effect of cAMP. The effect of glucocorticoids and Angiotensin II on the expression of MC2 receptor gene is carried out via a glucocorticoid-mediated inhibition of AP-1 binding sites on the ACTH receptor promoter. The angiotensin II protein stimulates the expression of MC2 receptor gene in the adrenal cortex. Promoter deletion studies revealed that the two AP1 binding elements on MC2 gene mediate the Angiotensin II stimulatory signals. Indeed, Angiotensin II rapidly activates Fos and Jun to promote MC2 transcription.

The MC2 accessory proteins MRAP and MRAP2

For many years researchers, in the field of adrenal physiology, suspected that an unidentified adrenal factor was needed in order for the effect of ACTH to take place. Indeed, ACTH was effective only in transfected cells with the MC2 receptor of the adrenal lineage. In other transfected cell with the MC2 receptor, ACTH was ineffective i.e. a crucial factor present only in cells of adrenal lineage was necessary for the effect of ACTH to take place. It was subsequently found that the MC2 receptor depended, for its trafficking to cell surface, on a small single trans-membrane domain protein the malfunction of which caused a clinical syndrome indistinguishable from that caused by the absence or malfunction of the MC2 receptor. This was shown to be the MC2 accessory protein (MRAP)(Figure 2).

MRAP is peculiar in that it naturally exists as an antiparallel homodimer formation (MRAPalpha and MRAPbeta) each pair associated with the MC2 receptor. Later it was also shown that the MRAP protein is necessary not only for the trafficking of the receptor to cell surface, but also for conformational changes necessary for the binding of the ACTH ligand. The MPAR gene is mapped in human chromosome 21 (C21orf61) corresponding to a murine adipocyte transmembrane protein. Two isoforms have been identified each conferring a different affinity of the MC2 receptor towards ACTH, thus explaining the observed two subpopulations of MC2 receptor as far as its affinity towards the ACTH is concerned (see above). MRAP has no effect on the trafficking of either MC1 or MC3 receptors, while it may suppress the trafficking of MC4 and MC5 receptors to cell surface. (38-43).
Figure 2.

THE FAMILIAL GLUCOCORTICOID DEFICIENCY (FGD) SYNDROMES

The FGD syndromes are autosomal recessive diseases characterized by atrophic zona fasciculata and zona reticularis accompanied by low plasma cortisol levels and elevated ACTH. FGD syndromes exhibit an isolated defect in the endogenous production of cortisol without a parallel defect in the production of aldosterone. The cortisol insufficiency is usually accompanied by hyperpigmentation of the skin and of the mucous membranes due to the high levels of circulating ACTH activating the cutaneous MC receptors. Recurrent episodes of hypoglycemia are also present due to the lack of the counter-regulatory effect of cortisol on the hypoglycaemic effects of insulin. The affected neonates present with failure to thrive, repeated episodes of hypoglycaemia and seizures.

Several types of FGD are recognized as per the pathophysiological defect on the ACTH receptor pathway.

The defect in type 1 FGD is localized in the MC2 receptor gene usually consisting of single point mutations. These inactivating mutations of the MC2 receptor may result from the introduction of a stop codons within the coding region of the ACTH receptor, frameshift mutations and mutations that cause single amino acid substitutions and structural disruption of the ACTH receptor affecting the ligand-binding domain resulting in loss of ligand-binding capability. Type 1 FGD represents approximately 25-40% of all patients with FGD.

The defect in type 2 FGD appears to be due to mutations in the MC2 receptor accessory protein, the MRAP mentioned above. It represents around 15-20% of all cases of. At least 8 different mutations in MRAP have been identified in type 2 FGD patients. Most mutations of MRAP cluster around the first coding exon (exon 3) especially at the splice donor site. The same mutation has been found in genetically unrelated individuals suggesting that this is a true ‘hot spot’ area for mutation. The other common site for mis-sense mutations is in the initiator methionine. This mutation prevents translation of the full-length protein. The next in-frame methionine is at position 60 which, if translated, would result in a severely truncated protein. The adrenal histology of FGD type 2 is typical of all other cases of FGD. They are characterized by a relatively preserved glomerulosa cell layer with highly atrophic and disorganized fasciculata and reticularis cell layers.
The defect in type 3 FGD concerns the regulatory alacrima-achalasia-adrenal insufficiency neurologic defect (ALADIN) protein causing the Allgrove syndrome.

The defects in the remaining cases of FGD are attributed to problems within the MC2 signaling transduction. Mutations in the intracellular portion of the MC2 receptor may result in the loss of its signal transduction properties. Absence of a biological response to ACTH may thus be due to impaired binding of ACTH to its receptors or inability of the bound ACTH to initiate its post-receptor effects. (44-47).

THE ACHALASIA-ADDISONIANISM-ALACRIMA (TRIPLE A) OR ALLGROVE SYNDROME

The triple A syndrome is caused by mutations in the gene encoding the regulatory protein ALADIN, a product of the ADRACALIN gene. ALADIN is a WD-repeat regulatory protein, part of the nuclear pore complex. It is crucial for the development of the peripheral and central nervous system. Mutations in ALADIN lead to a syndrome characterized by achalasia, alacrima and addisonism (48-54).

The underlying pathology of this syndrome appears to be a systemic and progressive loss of cholinergic function.

Alacrima is often manifested at birth, the patients exhibiting conjunctival irritation which if not treated leads to severe keratopathy and corneal dehydration-induced ulcerations. Alacrimia is diagnosed by Schirmer's test.

Achalasia is a neuromuscular disorder of the esophagus resulting in elevated lower esophageal sphincter pressure and lack of peristaltic waves of the esophagus, and recurrent lung infections resulting in respiratory failure.

The neurologic manifestations of the disease include motor neuron disease-like presentations, motor-sensoric or autonomic neuropathy, optic atrophy, cerebellar ataxia, Parkinsonism, and mild dementia. The autonomic nervous system dysfunction may be manifested as papillary abnormalities, an abnormal reaction to histamine test, abnormal sweating, orthostatic hypotension, and disturbances of the heart rate, cognitive deficits, pyramidal syndrome, cerebellar dysfunction, dysautonomia, neuro-ophthalmological signs and bulbar and facial symptoms. The neurological features may appear at a later age.

Adrenal insufficiency: only half of the patients develop adrenal insufficiency accompanied by episodes of hypoglycemia which intensify the problems of cognition.

Genetics: Using genetic linkage analysis, a causative locus has been identified on chromosome 12q13 coding the alacrima-achalasia-adrenal insufficiency neurologic defect (ALADIN) regulatory protein, a product of the ADRACALIN gene which is encoding the ALADIN protein of the nuclear pore complex. This protein is crucial in the development of the nervous system, especially its peripheral parts. Several mutations have been described including homozygous mutations of c.771delG (p.Arg258GlyfsX33) in exon 8 and c.1366C>T (p.Q456X) in exon 15 and a missense mutation in p.R155H.

REFERENCES

32. Soltani Y, Doghman M, Gout J, Rebuffet V, Vigier M, Bekkouche FH, Naville D, Begeot M. Hormonal regulation of the mouse...

