Dr. Ron’s Research Review – January 14, 2015

© 2014                                                                                                        

This week’s research review focuses on Testosterone and UGT2B17.

The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. (Yong et al., 2011)
A study found that all of the individuals of the UGT2B17 homozygous deletion/deletion genotype had no or negligible amounts of urinary testosterone. The deletion/deletion genotype was seven times more common in the Korean (66.7%) than the Swedish population (9.3%). In addition, the Swedes had significantly higher levels of serum testosterone, compared with the Koreans. (Jakobsson et al., 2006)
Over the concentration range of 2 to 8%, the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HPLC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%), caffeic acid (22%) and gallic acid (9%); using a ratio of phenolic:testosterone of 1:2.5. (Jenkinson et al., 2012)

Dr. Ron


 

Articles

Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism.
            (Jakobsson et al., 2006) Download
CONTEXT: The reproductive endocrinology in Asians and Caucasians is of great interest in view of large differences in prostate cancer rate and sensitivity to pharmacological male contraception. In addition, interpretation of certain antidoping tests is confounded by interethnic variation in androgen disposition. Uridine diphosphoglucuronosyl transferases have a key role in the homeostasis and metabolism of androgens. Recently a deletion polymorphism was detected in the UGT2B17 gene. OBJECTIVE: The objective of the study was to evaluate the contribution of the UGT2B17 deletion polymorphism to the interindividual and interethnic variation of androgen metabolism and excretion. METHODS AND RESULTS: Urine from 122 Swedish and 74 Korean healthy men was analyzed for several androgen glucuronides including testosterone. The distribution of the natural logarithms of urinary testosterone concentrations showed a distinct bimodal pattern in both groups, suggesting a monogenic inheritance. When the UGT2B17 genotypes were compared with urinary testosterone levels, all of the individuals of the UGT2B17 homozygous deletion/deletion genotype had no or negligible amounts of urinary testosterone. The deletion/deletion genotype was seven times more common in the Korean (66.7%) than the Swedish population (9.3%). In addition, the Swedes had significantly higher levels of serum testosterone, compared with the Koreans. CONCLUSIONS: Our results show that the UGT2B17 polymorphism is strongly associated with the bimodal distribution of the testosterone excretion and also with the large differences in testosterone excretion between Koreans and Swedes.

Red wine and component flavonoids inhibit UGT2B17 in vitro.
            (Jenkinson et al., 2012) Download
BACKGROUND: The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. The aim of this study is to investigate if red wine, a common dietary substance, has an inhibitory effect on UGT2B17. METHODS: Testosterone glucuronidation was assayed using human UGT2B17 supersomes with quantification of unglucuronidated testosterone over time using HPLC with DAD detection. The selected red wine was analyzed using HPLC; and the inhibitory effects of the wine and phenolic components were tested independently in a screening assay. Further analyses were conducted for the strongest inhibitors at physiologically relevant concentrations. Control experiments were conducted to determine the effects of the ethanol on UGT2B17. RESULTS: Over the concentration range of 2 to 8%, the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HPLC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%), caffeic acid (22%) and gallic acid (9%); using a ratio of phenolic:testosterone of 1:2.5. In contrast p-coumaric acid and chlorogenic acid had no effect on the UGT2B17. The most active phenolic was selected for a detailed study at physiologically relevant concentrations, and quercetin maintained inhibitory activity of 20% at 2 muM despite a ten-fold excess of testosterone. CONCLUSION: This study reports that in an in vitro supersome-based assay, the key steroid-metabolizing enzyme UGT2B17 is inhibited by a number of phenolic dietary substances and therefore may reduce the rate of testosterone glucuronidation in vivo. These results highlight the potential interactions of a number of common dietary compounds on testosterone metabolism. Considering the variety of foodstuffs that contain flavonoids, it is feasible that diet can elevate levels of circulating testosterone through reduction in urinary excretion. These results warrant further investigation and extension to a human trial to delineate the health implications.

Associations between polymorphisms in glucuronidation and sulfation enzymes and sex steroid concentrations in premenopausal women in the United States.
            (Yong et al., 2011) Download
Glucuronidation, catalyzed by UDP-glucuronosyltransferases (UGT) and sulfation, catalyzed by sulfotransferases (SULT), are pathways through which sex steroids are metabolized to less active compounds. These enzymes are highly polymorphic and genetic variants frequently result in higher or lower activity. The phenotypic effects of these polymorphisms on circulating sex steroids in premenopausal women have not yet been investigated. One hundred and seventy women aged 40-45 years had a blood sample drawn during the follicular phase of the menstrual cycle for sex steroid measures and to obtain genomic DNA. Urine was collected for 2-hydroxy (OH) estrone (E(1)) and 16alpha-OH E(1) measures. Generalized linear regression models were used to assess associations between sex steroids and polymorphisms in the UGT1A and UGT2B families, SULT1A1, and SULT1E1. Women with the UGT1A1(TA7/TA7) genotype had 25% lower mean estradiol (E(2)) concentrations compared to the wildtype (TA6/TA6) (p=0.02). Similar associations were observed between SULT1A1(R213/H213) and E(1) (13% lower mean E(1) concentration vs. wildtype; p-value=0.02) and UGT2B4(E458/E458) and dehydroepiandrosterone (DHEA) (20% lower mean DHEA vs. wildtype; p-value=0.03). The SULT1E1(A/C) and the UGT1A1(TA7)-UGT1A3(R11) haplotypes were associated with reduced estrogen concentrations. Further study of UGT and SULT polymorphisms and circulating sex steroid measures in larger populations of premenopausal women is warranted.

 

References

Jakobsson, J, et al. (2006), ‘Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism.’, J Clin Endocrinol Metab, 91 (2), 687-93. PubMedID: 16332934
Jenkinson, C, A Petroczi, and DP Naughton (2012), ‘Red wine and component flavonoids inhibit UGT2B17 in vitro.’, Nutr J, 11 67. PubMedID: 22958586
Yong, M, et al. (2011), ‘Associations between polymorphisms in glucuronidation and sulfation enzymes and sex steroid concentrations in premenopausal women in the United States.’, J Steroid Biochem Mol Biol, 124 (1-2), 10-18. PubMedID: 21193038